

45V Low Current Consumption 250mA CMOS Voltage Regulator

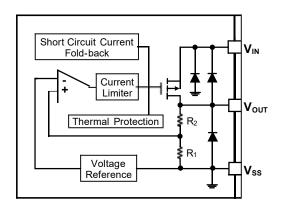
ZS86 XX Series

■ INTRODUCTION

The ZS86XX series are a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small.

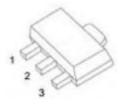
The ZS86XX series can deliver 250mA output current and allow an input voltage as high as 45V. The series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

■ APPLICATIONS


- Cordless Phones
- Radio control systems
- Laptop, Palmtops and PDAs
- Single-lens reflex DSC
- PC peripherals with memory
- LAN Cards
- Ultra Low Power Microcontrollers

- Wireless Communication Equipments
- Portable Audio Video Equipments
- Car Navigation Systems

■ FEATURES


- ◆ Low Quiescent Current: 2µA
- ◆ Operating Voltage Range: 2.5V~45V
- Output Current: 250mA
- Low Dropout Voltage: 700mV@100mA(Vout=3.3V)
- Output Voltage: 2.1~ 12V
- High Accuracy: ±2%/±1%(Typ.)
- High Power Supply Rejection Ratio: 70dB@1kHz
- Low Output Noise:
 - 27xV_{OUT} µV_{RMS}(10Hz~100kHz)
- Excellent Line and Load Transient Response
- Built-in Current Limiter, Short-Circuit Protection
- Over-Temperature Protection
- Stable with Ceramic or Tantalum Capacitor

■ BLOCK DIAGRAM

PACKAGING INFORMATION

SOT-89-3L

- 1.GND
- 2.IN
- 3.OUT

■ ABSOLUTE MAXIMUM RATINGS(1)

(Unless otherwise specified, T_A=25°C)

PARAMET	ER	SYMBOL	RATINGS	UNITS
Input Voltage(2)		V _{IN}	-0.3~50	V
Output Voltage ⁽²⁾		Vouт	-0.3~12	V
Output Current		l _{оит}	250	mA
Power Dissipation	SOT-89-3L	P _D	0.6	W
Operating Junction Tempe	rature Range ⁽³⁾	Tj	-40~+125	°C
Operating Ambient Tempe	rature	T _A	-40~+85	°C
Storage Temperature		T _{stg}	-40~+125	°C
Soldering Temperature		T _{solder}	260°C, 10s	

⁽¹⁾ Stresses beyond those listed under *absolute maximum ratings may* cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

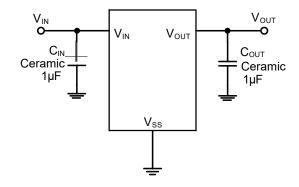
- (2) All voltages are with respect to network ground terminal.
- (3) This IC includes over temperature protection that is intended to protect the device during momentary overload. Junction temperature will exceed 125°C when over temperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	MIN.	NOM.	MAX.	UNITS
Supply voltage at V _{IN}	2.5		45	V
Operating junction temperature range, T _j	-40		125	°C
Operating free air temperature range, T _A	-40		85	°C

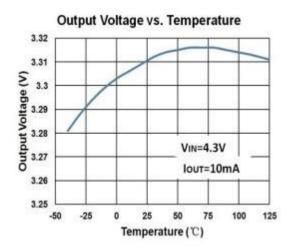
■ MODEL DEFINITION INFORMATION

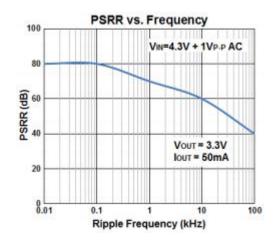
Model	Output Voltage
ZS8633	3.3V
ZS8636	3.6V
ZS8650	5.0V
ZS86120	12V

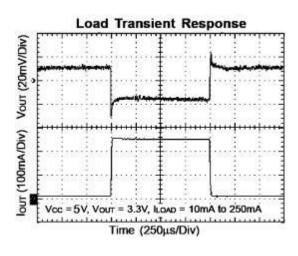

Electrical Characteristics

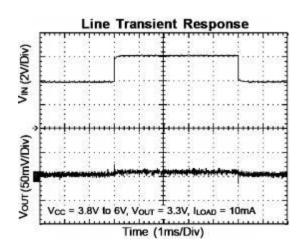
ZS86XX Series ($V_N = V_{OUT} + 2V$, $C_{IN} = C_{OUT} = 1 \mu F$, $T_A = 25 ^{\circ}C$, unless otherwise specified)

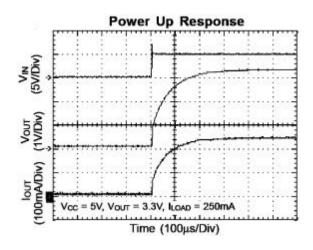
PARAMETER	SYMBOL	CONDI	TIONS	MIN.	TYP.(4)	MAX.	UNITS
Input Voltage	Vin			2.5	_	45	V
Output Voltage Range	V _{OUT}			2.1	_	12	V
DC Outrast Assument			ΙΟ Δ	-2	_	2	%
DC Output Accuracy		I _{OUT} =10mA		-1	_	1	%
Dropout Voltage	$V_{dif}^{(5)}$	I _{OUT} =100mA	A,V _{OUT} =3.3V	_	700	_	mV
Supply Current	Iss	I _{OUT} =0A		_	2	10	μA
Line Degulation	$\Delta V_{ m OUT}$	I _{OUT} =	10mA		0.01	0.3	0/ /\/
Line Regulation	$V_{OUT} \times \Delta V_{IN}$	V _{OUT} +1V≤V _{IN} ≤36V		<u> </u>	0.01	0.3	%/V
Load Regulation	ΔV_OUT	V _{IN} = V _O	•		8		mV
Load Rogalation	<u>A</u> v 001	1mA≤l _{о∪т}	≤100mA	_		_	111 V
Temperature	ΔV_{OUT}	I _{OUT} =4	0mA,		50		nnm
Coefficient	$V_{OUT} \times \Delta T_A$	-40°C <t< td=""><td>A<85°C</td><td></td><td>30</td><td></td><td>ppm</td></t<>	A<85°C		30		ppm
Output Current Limit	I _{LIM}	V _{OUT} = 0.5 x	$V_{OUT(Normal)}$		260		mA
Short Current	Ishort	V _{OUT} :	=V _{SS}	_	30	_	mA
	PSRR I	I _{оит} =50mA	100Hz		80		dB
Power Supply Rejection Ratio			1kHz	_	70	_	
			10kHz	_	60	_	
			100kHz	_	50	_	
Output Noise Voltage	Von	BW=10Hz	to 100kHz	_	27 x V _{оит}	_	μV _{RMS}
Thermal Shutdown Temperature	Tsp	I _{LOAD} =	30mA	_	160	_	°C
Thermal Shutdown Hysteresis	ΔT _{SD}		_	_	20	_	°C

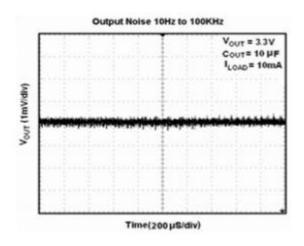

⁽⁴⁾ Typical numbers are at 25°C and represent the most likely norm.

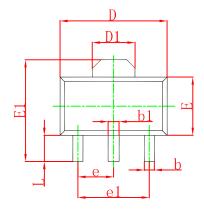

■ TYPICAL APPLICATION CIRCUIT

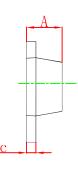


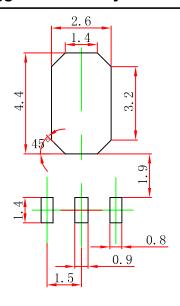

⁽⁵⁾ V_{dif} : The Difference Of Output Voltage And Input Voltage When Input Voltage Is Decreased Gradually Till Output Voltage Equals To 98% Of V_{OUT} (E).


Typical Characteristics








SOT-89-3L Package Outline Dimensions

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.55	1.550 REF		0.061 REF	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.06	0 TYP	
e1	3.00	3.000 TYP		8 TYP	
L	0.900	1.200	0.035	0.047	

SOT-89-3L Suggested Pad Layout

Note:

- 1.Controlling dimemsion写in写milimeters.
- 2.General tolerance: ±0.05mm.3.The pad layout is for reference purpose only.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. ZS has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses ZS products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. ZS makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of ZS, this productshall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. ZS shall not be responsible for casualties or property losses caused by abnormal use or application of this product.