60V Low Current Consumption 150mA CMOS Voltage Regulator # **ZS88XX Series** #### **■** INTRODUCTION The ZS88XX series are a group of positive voltage regulators manufactured by CMOS technologies with power consumption and low dropout voltage, which provide large output currents even when the difference of input-output voltage is small. The ZS88XX series can deliver 150mA output current and allow an input voltage as 60V. The high as series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source. #### ■ FEATURES - ◆ Low Quiescent Current:3µA - ◆ Operating Voltage Range: 2.5V~60V - Output Current: 150mA - ✓ Low Dropout Voltage: 500mV@50mA(V_{OUT}=3.3V) - Output Voltage: 1.2~ 12.0V - High Accuracy: ±2% (Typ.) - High Power Supply Rejection Ratio: 80dB@1kHz - Low Output Noise: 27xVout µ Vrms(10Hz~100kHz) - Excellent Line and Load Transient Response - Built-in Current Limiter, Short-Circuit Protection - Over-Temperature Protection ### **■** APPLICATIONS - Cordless Phones - Radio control systems - Laptop, Palmtops and PDAs - Single-lens reflex DSC - PC peripherals with memory - Wireless Communication Equipments - Portable Audio Video Equipments - Car Navigation Systems - LAN Cards - Ultra Low Power Microcontroller #### **■ BLOCK DIAGRAM** ### ■ PACKAGING INFORMATION #### ■ ABSOLUTE MAXIMUM RATINGS(1) ### (Unless otherwise specified, T_A=25°C) | | • | • • | , | |---|---------------------|---------------------------|-------| | PARAMETER | SYMBOL | RATINGS | UNITS | | Input Voltage ⁽²⁾ | VIN | -0.3~65 | V | | Output Voltage ⁽²⁾ | Vouт | -0.3~15 | V | | CE Pin Voltage ⁽²⁾ | Vce | -0.3~V _{IN} +0.3 | V | | Output Current | Іоит | 400 | mA | | Power Dissipation | | 600 | mW | | Operating Junction Temperature
Range | Tj | -40~125 | °C | | Storage Temperature | T _{stg} | -40~125 | °C | | Lead Temperature(Soldering, 10 sec) | T _{solder} | 260 | °C | | | Human Body | 2 | kV | | ESD rating ⁽³⁾ | Model-(HBM) | 2 | ΚV | | | Machine Model- (MM) | 200 | V | - (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability. - (2)All voltages are with respect to network ground terminal. - (3)ESD testing is performed according to the respective JESD22 JEDEC standard. The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pFcapacitor discharged directly into each pin. ### ■ RECOMMENDED OPERATING CONDITIONS | PARAMETER | MIN. | NOM. | MAX. | UNITS | |--|------|------|------|-------| | Supply voltage at V _{IN} | 2.5 | | 60 | V | | Operating junction temperature range, T _j | -40 | | 125 | ů | | Operating free air temperature range, T _A | -40 | | 85 | °C | ### MODEL DEFINITION INFORMATION | Model | Output Voltage | |---------|----------------| | ZS8833 | 3.3V | | ZS8850 | 5.0V | | ZS88120 | 12V | (V_{CE}=V_{IN}=V_{OUT}+2V, C_{IN}=C_{OUT}=1 μ F, T_A=25 $^{\circ}$ C,unless otherwise specified) | PARAMETER | SYMBOL | CONDITIONS | | MIN. | TYP. | MAX. | UNITS | |---------------------------------|---|--|------------------------|------|-----------------------|------|-------------------| | Input Voltage | Vin | | | 2.5 | _ | 60 | V | | Output Voltage Range | Vouт | | | 1.2 | _ | 12 | V | | DC Output Assurage | | | -1 A | -2 | _ | 2 | % | | DC Output Accuracy | | I _{OUT} =1mA | | -1 | _ | 1 | % | | Dropout Voltage | V_{dif} | I _{OUT} =50mA,V _{OUT} =3.3V | | _ | 500 | _ | mV | | Supply Current | | I -0A | V _{OUT} ≤5.0V | _ | 3 | 6 | μA | | Supply Current | lss | Іоит=0А | V _{OUT} >5.0V | | 5 | 10 | μA | | Standby Current | I _{STBY} | CE | = V _{SS} | | 0.1 | 0.5 | μA | | Line Regulation | ΔV_{OUT} | | =10mA | _ | 0.01 | 0.3 | %/V | | | V _{OUT} Δ V _{IN} | V _{OUT} +1\ | /≤V _{IN} ≤18V | | | | | | Load Regulation | ΔV оит | V _{IN} = V _{OUT} +1V,
1mA≤I _{OUT} ≤100mA | | _ | 10 | _ | mV | | Temperature | $\Delta V_{ m OUT}$ | I _{OUT} =10mA, | | | 50 | | D. 10.100 | | Coefficient | $\overline{V_{OUT} \Delta T_A}$ | -40°C <t<sub>A<125°C</t<sub> | | | 50 | | ppm | | Output Current Limit | Ішм | V_{OUT} = 0.5 x $V_{OUT(Normal)}$, V_{IN} = 5V | | 150 | 250 | | mA | | Short Current | I _{SHORT} | Vout =Vss | | _ | 20 | _ | mA | | | | | 100Hz | | 75 | | | | Power Supply | PSRR | | 1kHz | _ | 80 | _ | dB | | Rejection Ratio | PORK I | I _{OUT} =50mA | 10kHz | _ | 60 | _ | | | | | | 100kHz | _ | 45 | _ | | | Output Noise Voltage | Von | BW=10Hz to 100kHz | | _ | 27 x V _{оит} | _ | μV _{RMS} | | Thermal Shutdown
Temperature | Tsp | | | _ | 170 | _ | °C | | Thermal Shutdown
Hysteresis | ΔT _{SD} | | | _ | 20 | _ | °C | | CE "High" Voltage | V _{CE} "H" | | | 1.5 | | Vin | V | | CE "Low" Voltage | V _{CE} "L" | | | | | 0.3 | V | ## **■ TYPICAL APPLICATION CIRCUIT** $C_{\text{IN}}: 1.0 \mu F \ or \ more$ C_{OUT} : 1.0 μF or more, 10 μF is recommended ### Typical Characteristics #### ■ APPLICATION INFORMATION ### **Selection of Input/ Output Capacitors** Phase compensation is provided to secure operation even when the load current is varied. For this purpose, use a $1.0\mu F$ or more output capacitor (C_{OUT}) with good frequency characteristics and proper ESR (Equivalent Series Resistance). Connect a $1.0\mu F$ or more input capacitor (C_{IN}) between the V_{IN} pin and the V_{SS} pin as close as possible to the pins. The value of the output overshoot or undershoot transient response varies depending on the value of the output capacitor. When selecting the output capacitor, perform sufficient evaluation, including evaluation of temperature characteristics, on the actual device. In the design of portable devices the ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors. Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energyin the inductances of the power leads. A large voltage spike is created when the stored energy is transferred from these inductances into the ceramic capacitor. These voltagespikes can easily be twice the amplitude of the input voltage step. Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors (MLCC). Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the LDO input to a live power source. Adding a 3Ω resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients. ## **Typical Characteristics** ## (Vce=Vin=Vout+2V, Cin=1 μ F, Cout=10 μ F , Ta=25 $^{\circ}$ C,unless otherwise specified) ## **Typical Characteristics** (Vce=Vin=Vout+2V, Cin=1 μ F, Cout=10 μ F , Ta=25 $^{\circ}$ C,unless otherwise specified) # **SOT-89-3L Package Outline Dimensions** | Cumbal | Dimensions In Millimeters | | Dimensions In Inches | | | | |--------|---------------------------|-----------|----------------------|---------------------|--|-------| | Symbol | Min. | Max. | Min. | Max. | | | | Α | 1.400 | 1.600 | 0.055 | 0.063 | | | | b | 0.320 | 0.520 | 0.013 | 0.197 | | | | b1 | 0.400 | 0.580 | 0.016 | 0.023 | | | | С | 0.350 | 0.440 | 0.014 | 0.017 | | | | D | 4.400 | 4.600 | 0.173 | 0.181 | | | | D1 | 1.55 | 1.550 REF | | 0.061 REF | | | | E | 2.300 | 2.600 | 0.091 | 0.102 | | | | E1 | 3.940 | 4.250 | 0.155 | 0.167 | | | | е | 1.500 TYP | | 0.06 | 0 TYP | | | | e1 | 3.00 | 3.000 TYP | | 3.000 TYP 0.118 TYP | | 8 TYP | | L | 0.900 | 1.200 | 0.035 | 0.047 | | | # **SOT-89-3L Suggested Pad Layout** Note: 1.Controlling dimemsion写in写milimeters. 2.General tolerance: ±0.05mm. 3. The pad layout is for reference purpose only. ## **DISCLAIMER** #### IMPORTANT NOTICE, PLEASE READ CAREFULLY The information in this data sheet is intended to describe the operation and characteristics of our products. ZS has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice. Any person who purchases or uses ZS products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. ZS makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet. Without the written consent of ZS, this productshall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. ZS shall not be responsible for casualties or property losses caused by abnormal use or application of this product.